
A Security Evaluation of the SNOW-V Stream Cipher

Carlos Cid, Matthew Dodd and Sean Murphy
quaternion security ltd

4 June 2020

The SNOW-V stream cipher, first introduced in November 2018 in the IACR Cryptology
ePrint Archive [17], is the most recent member of the SNOW family of ciphers. SNOW-V follows
the same design principles of its predecessors SNOW, SNOW 2.0 and the 3GPP standard stream
cipher SNOW 3G [15, 16, 42], but introduces changes that make the cipher more suitable for
high-speed encryption in virtualised environments.

This report contains a security evaluation of the SNOW-V stream cipher, including its
use in an Authenticated Encryption with Associated Data (AEAD) mode of operation. The
focus of our security analysis is the version of SNOW-V published in September 2019 in the
IACR Transactions on Symmetric Cryptology [18]. This version is the same as specified in the
IACR ePrint Archive, revision of 27 August 2019 [17]. During our assessment, we attempted
to verify the security claims and analysis included in the cipher’s specification; where possible,
we extended the analysis from [18]. In addition to assessing the resistance of the cipher against
the traditional forms of attack against stream ciphers, we also attempted to consider dedicated
attacks that might be able to exploit the particular structure of SNOW-V. We note that although
we implemented the cipher and verified the test vectors included in Appendix C from [18], we did
not consider or verify the claims related to the implementation and performance of the cipher
in software and hardware. In particular we did not verify the correctness or security of the
source code contained in Appendices D-E of [18]. The evaluation task took 35 man-days of
work, including research, assessment and report writing, and was carried out between September
2019 and January 2020. This report is the final deliverable, and contains the findings of our
evaluation1.

The report is organised in the following way. In Section 1 we provide a brief overview of the
SNOW-V stream cipher. Our analysis of the cipher follows in Sections 2 to 8. Section 9 contains
our analysis of the use of SNOW-V in an AEAD mode of operation. We close the report with
our conclusions in Section 10.

1 The SNOW-V Stream Cipher

The SNOW-V stream cipher was proposed by Ekdahl et al. in November 2018. The latest
version of the algorithm is from August 2019, which is the focus of this analysis [18]. SNOW-V
is the latest member of the SNOW family of stream ciphers. SNOW-V is built around the same
components as its predecessors – a large Linear Feedback Shift Register and a non-linear Finite
State Machine – but its design has been updated to offer higher security and higher speed in

1This is a revised version of our security evaluation report, originally from 31 Jan 2020. This version contains
a small number of (mostly editorial) changes to version 1, following comments and feedback from the SNOW-V
designers.

1

software environments. The target application of the new design is to provide confidentiality and
integrity for 5G communications. Below we give a brief overview of the main components and
features of SNOW-V; we refer the reader to the specification document [18] for full details.

SNOW-V is a stream cipher taking 256-bit keys and 128-bit initialisation vectors. The cipher
features a large secret state, with 896 bits (compared to 576 bits in SNOW 2.0 [16], and 608 bits
in SNOW 3G [42]), and outputs 128 bits at each clocking (compared to 32 bits in both SNOW
2.0 and SNOW 3G). Similar to early members of the SNOW family of ciphers, SNOW-V is built
around two components:

• Linear Feedback Shift Register: SNOW-V’s linear component consists of two LFSRs of
length 16 over the field GF(216), using a circular design (Figure 1). The two LFSRs use
different irreducible polynomials to represent the contents of the register cells as elements
of GF(216). At each clocking of the cipher, two 128-bit strings are tapped from the LFSRs,
one is fed into the Finite State Machine (FSM), the other is used in the computation
of the cipher output. The LFSRs are then stepped 8 times. It can be shown that the
construction produces a maximum length sequence, only repeating, for a non-zero initial
state, after 2512 − 1 sets of 8 LFSR steps.

• Finite State Machine: SNOW-V’s non-linear component consists of three 128-bit registers
that are updated non-linearly based on the AES round function, integer addition modulo
232 and XOR operations. At each clocking of the cipher, the three registers are updated,
taking also as input a 128-bit string tapped from one of the LFSRs.

At each clocking, the cipher’s 128-bit output is produced by combining two of the FSM reg-
isters with a 128-bit string tapped from one of the LFSRs. See Figure 1 for a diagrammatic
representation of the SNOW-V stream cipher.

Figure 1: Diagram for SNOW-V (from [18])

2

The cipher’s initialisation process is similar to the keystream generation, except that no
output is produced; the 128-bit output string is instead fed into one of the LFSRs. In the
initialisation, the 256-bit key K and 128-bit initialisation vector IV are loaded into 384 bits of
the LFSRs. The remaining 512 bits of the cipher’s state (the three FSM registers and 128 bits of
the LFSR) are all set to zero. The cipher is then clocked 16 times without output. In the final
two clockings, one of the FSM registers is masked by the secret key. The cipher is then ready
for producing the keystream.

In summary, the SNOW-V stream cipher works as follows.

1. The key K and the initialisation vector IV are loaded into the LFSRs, and the cipher goes
through a 16-step initialisation process.

2. Then, for as long as required (up to the maximal permissable length):

i. a 128-bit string z is computed by combining a 128-bit string tapped from one of the
LFSRs with two of the FSM registers;

ii. the FSM is updated;

iii. the LFSRs are updated;

iv. z is output as part of the keystream.

For each (K, IV) pair, the cipher may produce a keystream of length at most 264 bits. In
addition, each key K may be used with a maximum 264 different IVs.

The cipher specification also defines SNOW-V in an Authenticated Encryption with Asso-
ciated Data (AEAD) mode of operation. This mode is essentially the SNOW-V stream cipher
combined with the authentication component of the GCM mode [14]. There are two distinctive
differences between SNOW-V in the AEAD and encryption-only modes. In the initialisation
process in the AEAD mode, 128 bits of the LFSR are set to a non-zero constant value (instead of
all zero, as in the encryption-only mode). Moreover, the combined maximum length of the input
to the algorithm in the AEAD mode follows the recommendations of [14], namely the maximum
length of the plaintext to be encrypted and authenticated is 239 − 256 bits, and the maximum
length of the Associated Data, which is to be authenticated only, is 264 − 1 bits.

SNOW-V aims to provide 256 bits of security, meaning that, under the assumption that
adversaries comply with the use and data limits stipulated in the specification document, “the
total cost of finding the secret key given some keystreams is not significantly smaller than 2256

simple operations”[18]. In the following sections, we attempt to assess this claim, and provide a
security assessment of the SNOW-V stream cipher.

2 SNOW-V Initialisation

In this section we consider the strength of the initialisation of SNOW-V.

2.1 Transfer of Key Entropy

The cipher’s initialisation process is described in Section 2.1 of [18]. Algorithm 1 in that section
describes how the bytes of the key K and initialisation vector IV are initially placed in the LFSR
registers; the initialisation is then completed by repeatedly clocking the system.

We note that the clocking process described in lines 8–12 (the first 14 steps) of Algorithm 1
is invertible. To show this, we first introduce some notation: the values R1, R2, R3 transform

3

to R1′, R2′, R3′ under FSMupdate() during initialisation, and the four groups of LFSR cells
AH := (a15, . . . , a8), AL := (a7, . . . , a0), BH := (b15, . . . , b8), BL := (b7, . . . , b0) transform under
LFSRupdate() to A′H , A

′
L, B

′
H , B

′
L, respectively. We also denote by AESr() a single standard

AES round operation with the all-zero subkey.
Now suppose that we know the values R1′, R2′, R3′, (A′H ⊕ z), A′L, B′H , B′L. Then we can

calculate:

• R1 = AESr−1(R2′)

• R2 = AESr−1(R3′)

• BH = B′L

• z = (R1 �BH)⊕R2; hence we can recover A′H

• AH , AL, BH , BL can now be computed from A′H , A′L, B′H , B′L

• R3 can be recovered from R1′, R2 and T2 = AL

It follows that round t of Algorithm 1 is invertible for t = 1, . . . , 14.
In the last two rounds of Algorithm 1 (when t = 15, 16), the key material (k7, . . . , k0) and

(k15, . . . , k8), respectively, are XORed onto the contents of R1. This means that there is no
longer a proof that the full (K, IV) diversity is transferred to the cipher state after loading. On
the other hand, the initialisation has now the benefit of being one-way.

Yet, since the (K, IV) diversity is 256 + 128 = 384 bits, which is less than half the full state
size of 7× 128 = 896 bits, a random mapping from the set of (K, IV) pairs to the set of loaded
SNOW-V states is overwhelmingly likely to be injective (see discussion in Section 2.4).

2.2 MDM test

We attempted to verify the results in Section 3.1 of [18] concerning the maximum degree mono-
mial (MDM) test. This test involves choosing a set I of positions in the IV, and allowing the IV
bits in these positions to take each of the 2|I| values in turn, while other IV and all K bits are
set to 0. For each of these (K, IV) values, we obtain the vector (z0, . . . , z15), where zt−1 is the
128-bit value z computed in step 9, for round t, of Algorithm 1 of [18]. We can then compute⊕

(K,IV) values

(z0, . . . , z15).

We score a sum of this kind by computing the number of initial zeros in the vector, starting
at the least significant bit of the sum of the z0. Considering the algebraic normal form of the
function giving any particular bit in terms of the IV bits, that bit will necessarily be 0 if for
each monomial of the ANF, the set of indices of terms in the monomial 6⊇ I; this will hold if, for
example, the size of the cube is greater than the maximum degree monomial.

Following [45], we first find a set I of size 3 giving the greatest score. Then, given an I of
size n, we search for i /∈ I maximising the score for the cube I ∪ {i}. Having obtained in this
way a series of cubes of sizes 3, 4, . . . , 24, and the corresponding scores, we can plot score/128
against size of cube I. We did this for both SNOW-V as specified in [18], and for the variant
with σ = identity2, and the results are shown in Figure 2. We note that our results differ a
little from those in [18]. They show that, with regard to these measurements, the results for
the specified algorithm are an improvement over the results for the algorithm with σ = identity;
moreover they also show that the results for the specified algorithm stabilise as soon as the cube
size increases.

2The early version of SNOW-V, from November 2018, did not include the permutation σ in the cipher’s FSM.

4

5 10 15 20
0

1

2

3

4

5

6

Cube size

N
u
m

b
er

of
n
o
n
-r

a
n
d
om

in
it

ia
l

ro
u
n
d
s

with specified σ
with σ = identity

Figure 2: MDM analysis of SNOW-V

2.3 Division Trails

We also undertook work to verify the results in Section 3.1 of [18] concerning the effectiveness
of division trail attacks on the loading scheme.

We implemented an MILP model for division property propagation in R-round SNOW-V
similar to that outlined in Algorithm 5 in [18]. We used the following techniques for coding the
required components.

• We used the methods in [49] to obtain a model for division trails for an AES S-Box. Algo-
rithm 2 on page 13 of [49] analyses the S-Box, considering each component of the output of
the S-Box as a polynomial function in the inputs, and then provides, for each input vector
u, a set of output vectors U so that the output multiset of the S-Box has division property
D1,n
U whenever the input to the S-Box has the division property D1,n

u . The list of binary vec-
tors (u, u′) for u′ ∈ U can then be characterised as the subset of all vectors with coordinates
0 or 1 in the space of real vectors given by a set of inequalities in their coordinates. Such
a set of inequalities can be found using Sage [43], by setting p = Polyhedron(vertices

= <list of these vectors>) and then using p.inequality generator() to enumerate
the inequalities. Finally, Algorithm 1 in [49] was used to reduce this large set of inequalities
to a much smaller set of (in fact 30) inequalities.

• We implemented division trails for 32-bit integer addition using the algorithm in Model 4
from [46].

• We implemented matrix multiplication over GF(2) using the standard copy and XOR-
models, as described in Section 3.2 of [47]. This implementation was then used to model
the clocking of the linear registers, as well as trails through the AES MixColumns operation.

As in Algorithm 5 of [18], we took care to constrain all the MILP variables remaining after the R-
round initialisation process, including the 128 MILP variables ZRi corresponding to the keystream
bits after R rounds. However, in our implementation we replaced the single constraint ΣiZ

R
i = 1

given in Algorithm 5 of [18] with, for each j, the pair of constraints ZRj = 1 and Σi 6=jZ
R
i = 0.

In this way we studied the 128 functions mapping key and IV to an intermediate keystream bit
separately.

5

The MILP model of division trails in SNOW-V can then be used with Algorithm 1 in [27]
to determine which key variables are involved in the super-polynomial for given IV cube indices;
and with Algorithm 6 of [24], in a variant not using the flag bits, to determine an upper bound
on the super-polynomial degree. Note that we did not implement the flag bits described in [24],
and registers not initialised with key or IV bits were assigned to additional MILP variables
constrained to 0.

As observed in the text under proposition 3 on page 8 of [50], our implementation of ma-
trix multiplication will cause some spurious trails to be produced. Similarly we use the MILP
model for logical AND described in [27]; as the authors point out there, our model consequently
“includes redundant propagations of the division property, but they do not affect obtained char-
acteristics”.

The results of our analysis, on the maximum number of key variables involved in a super-
polynomial and the maximum degree of the super-polynomial, may reasonably be expected to
differ from the results presented in [18]. This is because, for the intermediate keystream bit
Boolean functions f in SNOW-V, the sets U associated with the division property at the end of

a division trail u
f→ U will typically depend on the algorithm used for computing f , as well as the

way the MILP model for the trail is obtained from it. Hence the results presented here may be
more or less strong than those of another analysis based on a different method of computation.

However, our findings were similar to those presented in [18]. With cube size |I| = 128,
we found that the degree d and key size |J | were 256 for all the Boolean functions producing
intermediate bits once R was 6, for both the specified SNOW-V algorithm and its variant with
σ = identity. We therefore agree with the analysis in [18] that there is a thorough mixing effect
after 6 rounds of the SNOW-V initialisation, and that 16 rounds represents a good security
margin against cube attacks.

2.4 The Injectiveness of the SNOW-V Initialisation

The initialisation process of SNOW-V is based on two 128-bit blocks of key material and a single
128-bit initialisation vector (IV). The SNOW-V initialisation (Algorithm 1 of [18]) processes this
material to “load” the four 128-bit LFSR blocks and the three 128-bit blocks R1, R2 and R3,
which are then directly and immediately used to produce the cipher keystream. This mapping of
the input material to the seven 128-bit blocks of starting material need not be injective, in which
case different input initialisation material can give rise to the same keystream. However, this
mapping is non-injective with extremely low probability, as discussed below for both a random
IV and a fixed IV.

2.4.1 SNOW-V Initialisation with Random IV

If the IV can take any value, then it is reasonable to regard the SNOW-V initialisation as
a random mapping f : (F2)384 → (F2)896 of a set with 23×128 elements to a set with 27×128

elements. It is known that, for a random mapping g : X → Y and a generic element y ∈ Y , the

number of pre-images |g−1(y)| = #{x ∈ X|g(x) = y} of y can be approximated as Poi
(
|X|
|Y |

)
, a

Poisson random variable with mean |X||Y | . Thus, for a generic element s ∈ (F2)896, the number

|f−1(s)| of pre-images of s under the initialisation mapping f has a distribution that is given (to
a very good approximation) as a Poisson random variable, that is to say

|f−1(s)| ∼ Poi

(
2384

2896

)
= Poi(2−512)

6

with mean 2−512. The probabilities for the number of pre-images of a generic s ∈ (F2)896 under
f are therefore given by

P(0 preimage) = P(|f−1(s)| = 0) ≈ exp(−2−512)
P(1 preimage) = P(|f−1(s)| = 1) ≈ 2−512 exp(−2−512)

P(≥ 2 preimages) = P(|f−1(s)| ≥ 2) ≈ 1
22−1024 exp(−2−512) ≈ 1

22−1024 = 2−1025.

Thus the expected number of elements s of (F2)7×128 with two or more pre-images is approxi-
mately

2896 × 2−1025 = 2−129.

A random mapping f : (F2)3×128 → (F2)7×128 of the key material and a random IV given by the
SNOW-V initialisation process is therefore an injective function with overwhelming probability.

2.4.2 SNOW-V Initialisation with Fixed IV

If the IV is fixed, we can regard the initialisation as a random mapping f : (F2)256 → (F2)896. A
similar argument as above then shows that the expected number of elements s of (F2)896 with
two or more pre-images in this case is approximately 1

22−3×128 = 2−385. Thus a random mapping
f : (F2)2×128 → (F2)7×128 of the key material given by the SNOW-V initialisation process for a
fixed IV is an injective function with overwhelming probability.

3 Linearity Properties of SNOW-V

In this section we gather together considerations concerned with the linearity properties of
SNOW-V.

3.1 Primitivity of the LFSR arrangement

We verified the calculation of the primitive polynomial presented in Appendix A of [18] using
Sage [43], deriving the same polynomial; we also confirmed using Sage that it is indeed primitive.
As an additional check, we ran the Berlekamp-Massey algorithm on 1024 bits obtained as suc-
cessive contents of one of the stages of the LFSR construction during the keystream generation
phase of the algorithm, and confirmed that this gave the same primitive polynomial.

3.2 Correlation Attacks

Correlation attacks are discussed at some length in [18], and we agree with the conclusion there,
that it appears unlikely that such an attack can be mounted on SNOW-V.

We supplement the arguments in [18] with the following simple analysis. We ask how effective
correlation attacks are against the variant of SNOW-V in which the two �32 operations in the
cipher’s Finite State Machine are replaced with ⊕ operations.

We consider consecutive keystream words z, z′, z′′ and seek a (non-trivial) linear relation

z · L⊕ z′ · L′ ⊕ z′′ · L′′

in z, z′, z′′ with maximum correlation to bits from the 512-bit linear register3.
We have values of R1, R2, R3, T1 and T2 corresponding to z, and similarly values R1′, R2′,

R3′, T1′ and T2′ corresponding to z′ and values R1′′, R2′′, R3′′, T1′′ and T2′′ corresponding to

3We could consider linear equations involving more than 3 keystream blocks, or non-consecutive keystream
blocks, but these may be expected to give smaller levels of correlation.

7

z′′. As before, we write AESr() for the AES round operation, and for convenience, we will use
+ instead of ⊕.

For this algorithm variant, we have

R2′ = AESr(R1)

R3′ = AESr(R2)

R1′ = σ(R2 +R3 + T2)

z = R1 +R2 + T1.

Similarly

R2′′ = AESr(R1′)

R3′′ = AESr(R2′)

R1′′ = σ(R2′ +R3′ + T2′)

z′ = R1′ +R2′ + T1′

as well as

z′′ = R1′′ +R2′′ + T1′′.

We can rearrange the first group of equations to give:

R1 = AESr−1(R2′)

R2 = AESr−1(R3′)

R3 = σ−1(R1′) + AESr−1(R3′) + T2.

We can now calculate

z · L+ z′ · L′ + z′′ · L′′

= (R1 +R2 + T1) · L+ (R1′ +R2′ + T1′) · L′ + (R1′′ +R2′′ + T1′′) · L′′

= (AESr−1(R2′) + AESr−1(R3′) + T1) · L+ (R1′ +R2′ + T1′) · L′ +
(σ(R2′) + σ(R3′) + σ(T2′) + AESr(R1′) + T1′′) · L′′

= [R1′ · L′ + AESr(R1′) · L′′] +

[AESr−1(R2′) · L+R2′ · L′ + σ(R2′) · L′′] +

[AESr−1(R3′) · L+ σ(R3′) · L′′] +

T1 · L+ T1′ · L′ + (σ(T2′) + T1′′) · L′′.

We seek L, L′ and L′′ (not all equal to 0) so that this equation holds with maximum corre-
lation, over all values R1, R2 and R3. Recall that we can write AESr(X) = M(S(X)), where
S denotes the AES SubBytes operation — 16 parallel applications of the AES 8-bit S-box —
and the linear transformation M combines the effects of the AES ShiftRows and MixColumns

operations.
For any 128-bit vectors α and β, we define the correlation

cα,β := 2 ·Px(α · x = β · S(x))− 1

8

The values c2α,β have maximum value (over α, β not both 0) 2−6, which is attained for certain
pairs of vectors α, β corresponding to a single AES S-Box; that is, if the vector bits are divided
into 16 blocks of 8 bits, only one block (the same block for α and β) contains non-zero bits.
Moreover cα,β will necessarily be 0 if the blocks in which α vanishes are not the same as the
blocks in which β vanishes. Because S is invertible, the correlation coefficients for S−1 are

c′α,β := 2 ·Px(α · x = β · S−1(x))− 1 = 2 ·Px(α · S(x) = β · x)− 1 = cβ,α

Now we consider each of the three expressions in square brackets above in turn.

In the first expression in square brackets, if we write vectors as row vectors and matrix maps
on the right, the term AESr(R1′) · L′′ is

AESr(R1′) · L′′ = M(S(R1′)) · L′′ = (S(R1′)M)L′′T = (S(R1′)M)(L′′MT)T = S(R1′) · L′′MT

If we choose a linear approximation for S with input mask α1 and output mask β1, we have

L′′MT = β1,

and the value of this square-bracketed expression, with correlation cα1,β1
, equals

R1′ · L′ +R1′ · α1

which is 0 for
α1 = L′

In the second expression in square brackets, the term AESr−1(R2′) · L can be written

AESr−1(R2′) · L = S−1(M−1(R2′)) · L = S−1(R2′M−1) · L

If we write Σ for the linear transformation corresponding to the byte permutation σ, the last
term of the second bracketed expression is

σ(R2′) · L′′ = R2′Σ(L′′)T = R2′(L′′ΣT)T = R2′ · L′′ΣT

If we use an approximation to S−1 with input mask α2 and output mask β2, we have

β2 = L

and since
R2′M−1 · α2 = R2′M−1αT2 = R2′ · (α2(M−1)T)

the overall expression is, with correlation cβ2,α2
,

R2′ · (α2(M−1)T) +R2′ · L′ +R2′ · L′′ΣT

which is 0 if
α2(M−1)T + L′ + L′′ΣT = 0.

Similarly for the third square-bracketed expression, if we approximate S−1 with input mask
α3 and output mask β3, the expression is 0 with correlation cβ3,α3

if

β3 = L

and
α3(M−1)T + L′′ΣT = 0.

9

In summary, we now have 3 pairs of equations:

L′′MT = β1 , α1 = L′

β2 = L , α2(M−1)T + L′ + L′′ΣT = 0
β3 = L , α3(M−1)T + L′′ΣT = 0

corresponding to linear approximations which hold with correlation cα1,β2
, cβ2,α2

and cβ3,α3

respectively. These correlation values are 0 unless: each byte of αi is zero if and only if the
corresponding byte of βi is zero as well, for i = 1, 2, 3.

From the third equation, we have

L′′ = α3(M−1)T (ΣT)−1

Then from the sum of the second and third, we obtain

L′ = (α2 + α3)(M−1)T

We can substitute these into the first pair of equations to see that we have a linear approximation
if

α1 = (α2 + α3)(M−1)T and α3(M−1)T (ΣT)−1MT

have bytes vanishing in corresponding positions.

Consider first the algorithm variant derived from SNOW-V by setting σ to be the identity.
In this case, Σ = I, and α3(M−1)T (ΣT)−1MT is simply α3. We now require that α1, α2 and α3

all vanish in corresponding bytes. We can arrange for this by selecting n non-zero byte positions,
then choosing the 2.8.n corresponding bits of α2 and α3 in such a way that all the 8(16−n) bits
in the other byte positions of (α2 +α3)(M−1)T are 04. We expect that we can do this if, roughly,

16n ≥ 8(16− n)

i.e.
n ≥ 16/3.

Thus we would expect that we can take n = 6. If we suppose that we can choose L = β3
to maximise c2β3,α3

, and then the values for c2α1,β1
and c2β2,α2

are typical, the overall linear
approximation will hold with square correlation about

c2α1,β2
c2β2,α2

c2β3,α3
= (2−6)6.(2−8)6.2 = 2−132.

For SNOW-V itself, we require that α2 and α3 vanish in corresponding bytes, and so too do
(α2 +α3)(M−1)T and α3(M−1)T (ΣT)−1MT . Using a similar argument, we select the n non-zero
byte positions common to α2 and α3 and n non-zero byte positions common to (α2 +α3)(M−1)T

and α3(M−1)T (ΣT)−1MT . We attempt to choose the 2.8.n bits of α2 and α3 so that the
2.8(16−n) bits of (α2 +α3)(M−1)T and α3(M−1)T (ΣT)−1MT are zero. We expect that we can
do this roughly when

16n ≥ 2.8(16− n)

i.e.
n ≥ 8.

4This simple argument doesn’t take into account the particular form of (M−1)T , which provides less diffusion
than a typical linear transformation.

10

For n = 8, we expect to have an overall linear approximation with square correlation about

(2−6)8.(2−8)8.2 = 2−176.

Although both these overall square correlation values c2 are greater than 2−256, the LFSR
arrangement has primitive polynomial of length 512. We could attempt a fast correlation attack
based on a trinomial multiple of the primitive polynomial, but this will not produce a theoretical
attack since in both cases (c2)3 < 2−256. In view of the fact that SNOW-V additionally uses
�32 combiners in its Finite State Machine, we conclude that SNOW-V appears to be robust
against correlation attacks.

4 Algebraic Attacks

Algebraic attacks are a cryptanalytic technique in which the attacker constructs a polynomial
system describing the cipher operation, which they then attempt to solve using a polynomial-
system solving method to recover secret information; in the case of a stream cipher, the internal
state or the secret key. The first step – constructing a polynomial system for the cipher – is crucial
for the success of an algebraic attack; it may be the case that the most natural polynomial system
derived from the cipher is not the one that allows for an efficient solution5. Once the system
has been defined, the attacker will seek the most suitable polynomial-system solving method to
obtain the solution. In practice, the most common methods used in cryptanalysis are linearisation
methods [12], Gröbner basis algorithms [19, 20] and SAT solvers.

The resistance of SNOW 2.0 against algebraic attacks was investigated in [6]. A modified
version of SNOW 2.0 was considered – one in which the modular additions were replaced by
XOR – and an attack was proposed that could recover the initial state with time complexity of
around 250.

Section 3.5 of the SNOW-V specification document [18] discusses the possibility of mounting
a general algebraic attack against the cipher, and after a brief discussion it concludes that such
an approach should not succeed. The main reasons presented were the FSM with three 128-bit
registers (compared to two 32-bit registers in SNOW 2.0), the use of full AES rounds in the
FSM, and the modular arithmetic operations.

In this section we present a more detailed discussion of algebraic attacks against SNOW-V,
focusing on the construction of the polynomial system derived from the cipher. Based on our
analysis, we reach the same conclusion as the designers – that SNOW-V should not be vulnerable
to algebraic attacks. Our discussion is based on an iteration of the SNOW-V updating process
as shown in Figure 3.

4.1 A Quadratic Equation System over GF(2) for SNOW-V

We begin by discussing the generation of a (linear and) quadratic system of equations over GF(2)
relating the variables used in describing a SNOW-V encryption. The linear equations arise from
the LFSRs, and the quadratic equations arise from the modular addition and the AES S-Box.

• Iteration Equations A and B
These equations arising from the LFSRs can effectively be disregarded for the purpose of
determining the number of nonlinear equations and the number of associated variables.
The linear updating functions Linα and Linβ allow future 128-bit blocks T1(2), T1(3), . . .
and T2(2), T2(3), . . . to be replaced using linear combinations of T1(−1), T1(0), T2(−1), T2(0).

5This is illustrated, for example, in a successful algebraic attack against a recently-proposed block cipher [1].

11

Initial 128-bit Block Variables T1(−1), T1(0), T2(−1), T2(0), R1(0), R2(0), R3(0)

Iteration Equation A T1(t+1) = Linβ(T1(t), T2(t), T1(t−1), T2(t−1))
Iteration Equation B T2(t+1) = Linα(T1(t), T2(t), T1(t−1), T2(t−1))
Iteration Equation C R1(t+1) = σ

(
R2(t) �32 (R3(t) ⊕ T2(t))

)
Iteration Equation D R2(t+1) = AESr(R1(t))
Iteration Equation E R3(t+1) = AESr(R2(t))
Iteration Equation F z(t+1) = (R1(t) �32 T1(t))⊕R2(t)

Keystream Output z(t+1)

Figure 3: SNOW-V Iteration Updating Process of 128-bit blocks. Linα and Linβ are
linear functions arising from the LFSRs, and AESr denotes the AES round operation with the
all-zero subkey.

• Iteration Equations C and F
The only nonlinear part of each of these iteration equations is the �32 operation based
on integer addition modulo 232. An output bit from an integer addition operation can be
uniquely specified as a quadratic function (arising from determining the “carry”) of the
input bits to the integer addition. Thus these iteration equations for 128-bit blocks each
give rise to effectively 128 quadratic equations of the equation variables6.

• Iteration Equations D and E
The only nonlinear part of each of these iteration equations is the AES S-Box, and in
particular the finite field “inversion” operation for GF(28) with 16 AES S-Boxes used for
each iteration equation. Each AES S-Box gives rise to 39 quadratic equations [11], so these
iteration equations for 128-bit blocks each give rise to 16× 39 = 624 quadratic equations.

We can therefore make the following determination of the numbers of variables and quadratic
equations over GF(2) for the SNOW-V iterative updating process.

Number of Initial Variables = 7× 128 = 896
Number of Variables per iteration = 3× 128 = 384

Number of Quadratic Equations per iteration = 2× 128 + 2× 624 = 1504

This leads to the following expressions for the number of variables V (T) in use after T iterations
and the number of quadratic equations Q(T) generated after T iterations:

V (T) = 896 + 384T and Q(T) = 1504T.

Thus we can always obtain substantially more quadratic equations than variables after T it-
erations. However, the growth in the number of quadratic equations is linear in the number
of variables, with Q(T) ≈ 3.91V (T) for large T , whereas the number of quadratic monomials
grows quadratically in the number of variables. This precludes the application of the standard
linearisation method (as used in [6]) to solve this system.

6Each of the modular addition operations gives in fact rise to 124 quadratic equations and 4 linear equations,
since the least significant bit addition is linear. However, considering all equations being quadratic simplifies the
presentation and computations in this section, while making no difference in the overall conclusion.

12

Moreover, the same issue essentially applies if we adopt a Gröbner basis or similar approach
to attempt to solve this quadratic system. More formally, the approach and discussion of [3]
show that we need to consider the generating function

f(z) =
(1 + z)V (T)

(1 + z2)Q(T)
=

(1 + z)896+384T

(1 + z2)1504T

= 1 + (896 + 384T)z + (400960 + 342368T + 73728T 2)z2

+ (119486080 + 152449152T + 65409024T 2 + 9437184T 3)z3

+

(
26675267360 + 45202741904T + 28979933696T 2

+8330674176T 3 + 905969664T 4

)
z4 +

The degree of the generated equations for a Gröbner basis approach to succeed is given by the
degree for which the coefficient in the series expansion of the generating function f(z) changes
sign from positive to negative. It can be seen that coefficients given up to degree 4 above are all
positive (for T > 0), as they are up to degree at least 10, so any Gröbner basis approach would
require the generation of polynomials of degree at least 10. In fact, the discussion of [3] shows
that all of the power series coefficients are positive in this case, thus indicating that a general
quadratic system with these parameters cannot in general be feasibly solved by a Gröbner basis
approach. The discussion of [3] shows that the number Q(T) of quadratic equations should grow
much faster than linearly in V (T) for such quadratic systems to be feasibly soluble by Gröbner
basis methods in general.

4.2 A Cubic Equation System for SNOW-V

We can potentially vastly increase the number of generated equations by considering cubic equa-
tions for the S-Box inversion. The first source of cubic equations is multiplying each existing
quadratic equation by each existing variable to give up to Q(T)V (T) possible cubic equations by
this method. However, we note that these possible cubic equations generated in this way may
not be linearly independent. Thus Q(T)V (T) may be an overestimate of the effective number of
cubic equations that can be generated. Furthermore, these generated cubic equations are already
directly handled by the methods given in [3] and discussed above.

We therefore focus on entirely fresh cubic equations that are not immediately derivable from
the quadratic equations described above. The source for these equations are the AES S-Box
inversions. The techniques for generating equations discussed by [11] can be used to show that
there are 526 cubic equations in the 16 input and output variables of an AES S-Box inversion.
Thus we can generate 2 × 16 × 526 = 16832 cubic equations from the AES S-Boxes for every
iteration of SNOW-V, so the total number of fresh cubic equations C(T) generated after T
iterations is

C(T) = 16832T.

The approach and discussion of [3] shows that we need to consider the generating function

f(z) =
(1 + z)V (T)

(1 + z2)Q(T)(1 + z3)C(T)
=

(1 + z)896+384T

(1 + z2)1504T (1 + z3)16832T

= 1 + (896 + 384T)z + (400960 + 342368T + 73728T 2)z2

+ (119486080 + 152449152T + 65409024T 2 + 9437184T 3)z3

+

(
26675267360 + 45202741904T + 28979933696T 2

+8330674176T 3 + 905969664T 4

)
z4 +

It can be seen that all the displayed coefficients are positive (for T > 0), as they are to degree at
least 10. For an approach based on Gröbner basis to be feasible, we would need to generate an
equation system during computation of at least degree 10, which is clearly impractical for the
number of variables.

13

4.3 Further Equation Systems for SNOW-V

The above discussions for a quadratic equation system and a cubic equation system for SNOW-
V indicate the general issues with the use of equation systems in the cryptanalysis of SNOW-V.
If the number of equations of degree k given by T iterations of SNOW-V is O(T k−1), then the
number of equations of degree d > k that can be generated is O(T d−1). However, the number of
monomials of degree d is O(T d). Thus in general, we would expect there to be more monomials
of degree d than equations of degree d, making the “linearisation” phase of a Gröbner basis
approach unlikely to succeed. Thus it seems finding even higher degree equations relating the
input and output of an AES S-Box inversion will not give an equation system that is practical
to solve.

It might be possible to construct an equation system for AES over GF(28). For example, an
approach using finite field conjugates in the manner of the Big Encryption System (BES) [11, 38]
gives a simple quadratic equation system for the AES S-Box inversion over GF(28). However,
other design features of SNOW-V, such as the integer addition modulo 232 and the byte-wise
permutation σ would seem to mean that it is not possible to construct a simple GF(28) equation
system to describe an iteration of SNOW-V.

A related (byte-wise) approach is given in Section 3.4.1 of the SNOW-V specification [18] (in
a slightly different context), where equations between three successive output blocks z(t+1), z(t+2)

and z(t+3) are derived by partially inverting the keystream generation process, thus potentially
giving fresh equations not previously directly considered. However, the equations in this case (see
Section 3.4.1 of [18]) do not seem to lead to any material simplification of a SNOW-V equation
system, whether expressed over GF(2) or over GF(28), that would allow a cryptanalysis based
on solving the corresponding equation systems.

Overall, our assessment is that SNOW-V is not vulnerable to polynomial-system solving
algebraic attacks. We note however that we do not discard the idea that multivariate equation
systems derived from the cipher may be helpful when combined with other methods of crypt-
analysis; for example the determine phase in a guess-and-determine attack (Section 5) could be
performed by solving a multivariate nonlinear system (more generally, see [32] for a proposal of
a hybrid method for solving systems of equations). However we have not explored these ideas
further during our analysis.

5 Guess-and-Determine Attacks

In a guess-and-determine attack, an attacker will guess a number of bits of the internal state,
and then using a number of keystream output bits, will attempt to determine the remaining
secret bits of the internal state based on the cipher’s state updating function. The overall guess
for the internal state is then checked for correctness by further running the cipher’s keystream
generator. A stream cipher would be considered vulnerable to guess-and-determine attacks if
the overall complexity of the attack is lower than 2k operations, where k is the size of the secret
key in bits.

A guess-and-determine attack was successfully applied against the first member of the SNOW
family [15]. The attack took advantage of the linear recurrence relation in the LFSR of the
original cipher; in particular that the distances between taps were multiples of 3. This reduced
the number of guesses required to determine particular internal values [25]. As far as we are aware,
the two later versions of SNOW [16, 42] are not vulnerable to guess-and-determine attacks with
complexity lower than exhaustive key search.

In [18], based on a simple argument, the designers state that they do not expect SNOW-V to
be vulnerable to guess-and-determine attacks: when using the first keystream output word, an

14

attacker would need to guess two 128-bit registers (to determine the third one used to produce
the output); a second keystream output word would require guessing of an extra 128-bit value,
which would already take the overall complexity much higher than exhaustive key search. We
have considered guess-and-determine attacks against SNOW-V, and describe below a reasonably
straightforward state recovery attack requiring the guess of 4× 128-bit registers, and using three
consecutive keystream output words.

Let us denote by A(t) the state of LFSR-A at time t. Then let A
(t)
L and A

(t)
H be the 128-bit

words corresponding to the 8 first, and 8 last, registers in LFSR-A at time t, respectively. We

define B(t), B
(t)
L and B

(t)
H in similar way. Note that T1(t) = B

(t)
H and T2(t) = A

(t)
L .

As a consequence of the circular structure of the cipher’s LFSR component, these registers
are updated as follows:

A
(t+1)
L = A

(t)
H (1)

A
(t+1)
H = B

(t)
L ⊕ Linα(A

(t)
L , A

(t)
H) = B

(t)
L ⊕ Linα(A(t)) (2)

B
(t+1)
L = B

(t)
H (3)

B
(t+1)
H = A

(t)
L ⊕ Linβ(B

(t)
L , B

(t)
H) = A

(t)
L ⊕ Linβ(B(t)), (4)

where Linα,Linα are the linear recurrence relations of LFSRs A and B, respectively, projected
into the last eight registers (i.e. positions 8− 15). We also have the FSM updating relations

R1(t+1) = σ(R2(t) �32 (R3(t) ⊕ T2(t))) = σ(R2(t) �32 (R3(t) ⊕A(t)
L)) (5)

R2(t+1) = AESr(R1(t)) (6)

R3(t+1) = AESr(R2(t)) (7)

and the output equation

z(t) = (R1(t) �32 T1(t))⊕R2(t) = (R1(t) �32 B
(t)
H)⊕R2(t). (8)

In the attack, we guess at time t the three FSM registers R1(t),R2(t),R3(t). Then given z(t),

we can use the output equation (8) at time t to determine B
(t)
H . Likewise, given z(t−1), we can

use the output equation, and the FSM relations (6) and (7) to determine B
(t−1)
H , and then the

LFSR updating relation (3) to determine B
(t)
L .

The output z(t+1) at time t+ 1 gives us the relation

(R1(t+1) �32 B
(t+1)
H) = (z(t+1) ⊕R2(t+1)),

where the value on the right-hand side is known. Now from (4) we have B
(t+1)
H = A

(t)
L ⊕Linβ(Bt),

while by (5)

R1(t+1) = σ(R2(t) �32 (R3(t) ⊕A(t)
L)).

Thus we have the relation

σ(R2(t) �32 (R3(t) ⊕A(t)
L)) = (z(t+1) ⊕R2(t+1)) �32 (A

(t)
L ⊕ Linβ(Bt)),

which can be used to determine the only unknown in the equation A
(t)
L . Finally we can simply

guess the final 128-bit word A
(t)
H to fully recover the internal state at time t.

The attack described above guesses 512 bits, and requires three consecutive output words to
recover the full 896 state bits. We expect that further output words could be used to remove the

15

need to guess the entire word A
(t)
H in the final step, but in our work we did not investigate the

idea further. The attack does establish an upper bound on the complexity of a state-recovery
guess-and-determine attack against SNOW-V, and while we do not discard the idea that there
might be more sophisticated guessing strategies, we share the opinion of the designers that the
cipher is not vulnerable to guess-and-determine attacks – guessing the entire 256-bit secret key
is likely to be the best guessing strategy for recovering the internal state of SNOW-V.

After issuing the first version of this security evaluation report in January 2020, Jiao et al.
published a guess-and-determine attack against SNOW-V [31]. In that work, they describe
an attack with similar strategy, and of same complexity as above (2512). In addition, they
also propose a more efficient, and more elaborate byte-based guess-and-determine attack with
complexity of 2406, making use of seven keystream blocks. Despite this improvement, our opinion
remains that SNOW-V is not vulnerable to guess-and-determine attacks.

6 Time-Memory-Data Trade-Off (TMD-TO) Attacks

Time-memory trade-off is a generic technique to speed up computations by trading online (real-
time) computation time complexity against precomputation time and space, which is widely used
in cryptography. In the context of symmetric-key cryptanalysis, Time-Memory-Data Trade-Off
(TMD-TO) attacks are typically applied to invert a one-way function derived from the cipher,
where the input is some secret information7.

Let f : X → Y be a one-way function from the domain X of size N into the codomain Y,
of size ≈ N , and assume that at realtime an attacker has D data points {y′1, y′2, . . . , y′D} ⊆ Y,
at least one of which it wishes to recover a preimage x ∈ X , where f(x) = y′i for some i. As an
alternative to online exhaustive search, requiring of the order of N/D operations, the basic TMD-
TO technique precomputes (in time P) and stores M pairs (yi = f(xi), xi), for random xi ∈ X .
It then follows from the birthday paradox that if DM = N , then we can expect to recover a
preimage x. In this basic attack, precomputation time P is ≈ M , and online computation time
T is of the order of D table searches. In 1980 Hellman [26] proposed an improved technique,
applicable for key-recovery against block ciphers, with D = 1, and obtained optimum tradeoff
values on the curve TM2 = N2, with P = N , as T = M = N2/3.

Against stream ciphers, the basic attack was first proposed by Babbage [2] and Golic [21].
In this case X is the cipher’s internal state of size N , Y is the set of log(N)-bit strings, and f
is the cipher’s keystream output function. In this attack, M pairs are precomputed and stored,
and in realtime D data points are derived from the keystream of length ≈ D produced by the
target stream cipher. Taking the optimum point in the curve TM = N , with 1 ≤ T ≤ D
and P = M , an attacker can recover the target secret internal state with time and memory
complexity T = M = N1/2. Biryukov and Shamir [7] later adapted and applied Hellman’s ideas
to TMD-TO attacks against stream ciphers, and obtained the tradeoff curve TM2D2 = N2, with
1 ≤ D2 ≤ T . Again, an optimum point would be T = M = N1/2, with D = N1/4 and P = N3/4.

Applying the generic techniques above, an attacker may always recover the secret state of
a stream cipher with online time, memory and data complexities T,M,D and having optimum
values lower than the complexity of state exhaustive search N . In practice the attacker is
interested in the secret key of size k bits – typically we have N >> 2k, and the claimed security
level of the cipher is k bits. In many cases however, state recovery allows the attacker to reverse
the cipher’s state updating function to recover the secret key. These stream ciphers would
therefore be considered vulnerable to the basic TMD-TO attacks whenever T,M,D < 2k. As a

7For example, a block cipher key, a stream cipher internal state, or passwords protected by a hash function.

16

consequence of the attacks above, the bit length log2(N) of a stream cipher internal state should
be at least twice as long as the cipher’s key length k.

Although one may make some practical improvements on the basic attack techniques above
(see for example [8, 10]), we agree with the assessment in Section 3.3 of [18] that claims that
SNOW-V is not vulnerable to the basic TMD-TO attack. The internal state of the cipher is
896 bits long, i.e. log2(N) = 3.5k, and thus we have the tradeoff relation TM2D2 = N2 = 27k,
which means that at least one of the complexities T,M,D must be higher than 2k (in fact, this
would already be the case whenever log2(N) > 2.5k). Moreover, recovery of the internal state
may not allow the recovery of the secret key, as the initialisation process is not invertible (due
to the masking of the register R1 by the secret key in the last two steps of the initialisation).

Against stream ciphers using an initialisation vector, Hong and Sarkar [28] proposed a differ-
ent form of TMD-TO attack, where the one-way function f to be inverted is the function taking
the combined input (K, IV) into a specific subset of the keystream; i.e. f : K×V → Y, where K
is the key space of size 2k, V is the set of all allowable IVs of size 2v, and Y is the set of (k+v)-bit
strings. As before, a table of size M can be precomputed taking time P . The D data points
are collected by observing (k+v)-bit substrings of the keystream generated under unknown keys
and known IVs. The secret key can then be recovered with online time complexity T . Stream
ciphers using initialisation vectors would be considered vulnerable to this form of TMD-TO at-
tack whenever T,M,D < 2k. By considering the tradeoff curves above, [28] concludes that the
bit length of the IV must be at least as large as the key length, i.e. v ≥ k.

In SNOW-V, we have k = 2v, and thus the domain of f is of size N = 21.5k. Using
the basic Babbage-Golic approach, one may then mount a TMD-TO attack against the cipher
with complexity T = M = D = P = N1/2 = 23k/4 = 2192. We note that the limit on
the number of different IVs used under the same key means that, if attempting to recover a
particular key K, then D ≤ 264 and the attacks do not apply. However the attack may still
be employed to recover some key Ki used by the cipher. The Biryukov-Shamir approach seems
less useful against SNOW-V: if we were to have precomputation time P = N/D ≤ 2k, then
D ≥ N/2k = 21.5k−k = 20.5k, which implies T ≥ D2 ≥ 2k.

Dunkelman and Keller [13] further extended the attack in [28], to consider the use of chosen
IVs and have the precomputed tables under these IVs only. This leads to further improvements
in the attack, in particular in the case of SNOW-V to allow the application of the Biryukov-
Shamir attack even when T < D2. As a consequence of the proposed attack, [13] claims that the
IV length should be at least 1.5 times the key length for a stream cipher to be resistant against
this form of TMD-TO attack.

The authors of SNOW-V acknowledge that the cipher is vulnerable to the TMD-TO attacks
from [28, 13] in Section 3.3 of [18], but state that this would be the case for any stream cipher
with keys longer than that of its IVs. Our understanding is that it was a design choice to have
keys twice as long as the IV, since the high complexities in memory, data and precomputation
time mean that these TMD-TO attacks offer no threat to SNOW-V in practice.

7 Related Key-IV Attacks

Related key-IV attacks against stream ciphers attempt to find different key-IV pairs that produce
related keystreams. They typically work by exploiting details of the cipher’s initialisation process,
and show that the secret state at step i in the initialisation under (K, IV) is equal to the secret
state at step j ≤ i in the initialisation under (K ′, IV ′) – for example, if j = 0, then in the
initial state for (K ′, IV ′). If this is the case, the cipher would produce related keystreams as
z′(t) = z(t+i−j), for some or all t ≥ 0.

17

Related key-IV attacks against stream ciphers are the analogous to slide attacks against block
ciphers, and may at times be used to recover the unknown key K. Although one can argue the
applicability and relevance of related key-IV attacks in practice, the existence of this form of
attack would indicate an undesirable behaviour for a secure stream cipher – in particular it may
render invalid security proofs that are based on the assumption that the stream cipher behaves
like a perfect random bit generator.

Related key-IV attacks were briefly mentioned in Section 3.2 of [18], in particular it was
noted that sliding properties in the initialisation procedure of previous versions of SNOW had
been considered in [34]. That work showed the existence of a number of related key-IV pairs
for SNOW 3G and SNOW 2.0 (namely, 232 for SNOW 3G, and over 264 and 2192 pairs for the
128-bit and 256-bit variants of SNOW 2.0, respectively).

During our analysis we attempted to mount a related key-IV attack against SNOW-V, but
were not successful. The main obstacles for producing such an attack against SNOW-V seem
to us to be the following.

• The very large number of bits in the initialisation initial state set to a fixed value: 512 bits
in total are set to zero (128 bits in LFSR-B, and 3× 128 bits in the registers R1, R2, R3).
This requirement gives rise to a very large number of constraints in the key and IV values
to produce related initialisation states. In contrast, only 64 bits are fixed in SNOW 2.0,
and 96 in SNOW 3G8.

• The large number of state bits that are updated in each initialisation step.

• The masking of the register R1 by the secret key in the last two steps of the initialisation.

As a result, our analysis indicates that it is highly unlikely that SNOW-V is vulnerable to related
key-IV attacks.

8 Side-Channel Attacks

The SNOW-V specification document does not consider the security of the cipher against side-
channel attacks. It explicitly states that the designers “have not made any specific design choices
to explicitly support implementations that should protect against side-channel attacks and fault
attacks [...] if relevant for an application [such attacks] have to be considered when the algorithm
is implemented” ([18], Section 3.7). We have therefore decided not to consider in any depth the
security of the cipher against side-channel attacks. We find it however pertinent to make a few
observations about the resistance of SNOW-V against side-channel attacks9.

The three operations in SNOW-V that may be vulnerable to side-channel attacks are:

(i) multiplication over the finite field GF(216) of secret registers in the LFSRs by known field
elements in the LFSRupdate() operation;

(ii) multiplication over the finite field GF(2128) of the secret one-time authentication key by
known field elements (namely AAD and ciphertext 128-bit blocks) in the GHASH operation;

(iii) AES round encryption in FSMupdate() operation.

8Although we note that other constraints arise for those ciphers due to the way the key and IV are loaded into
the LFSR.

9We do not discuss fault attacks, as in our opinion most stream ciphers are likely to be vulnerable to fault
analysis – under some model – and countermeasures against these attacks are well understood.

18

Given that SNOW-V is designed mainly for software implementations, potentially in virtualised
environments, a form of attack that may be of potential concern is a timing attack. Timing
attacks have been successfully demonstrated against the AES and the GCM mode of operation.

Timing attacks against AES are typically enabled by cache misses in software implementations
that use table look-ups in the AES round computation [5, 40, 39, 9, 48]. While these attacks
often require knowledge of the block cipher’s input or output, they have also been demonstrated
in blind attacks when the attacker shares resources in a virtualised environment with the target
implementation [29].

We note that in a typical cache-based timing attack against AES, the target is the unknown,
fixed encryption key. In SNOW-V, the AES round encryptions are performed with a known
key and mostly with unknown pseudo-random inputs and outputs. However at the start of the
initialisation process, some of the AES round operations take as input strings whose bits can
be expressed as simple expressions on the key and IV bits: for example, during step 3 of the
initialisation, the AES round operation for computing R2 takes as input the register R1 from
step 2, whose bits can be expressed as simple linear relations of the first 128 bits of the key; then
in step 4 the AES round operation for computing R2 takes as input the register R1 from step 3,
whose bits can be expressed as simple relations of the key and IV bits (and the round operation
for computing R3 in step 4 takes as input the R2 value from step 3). If the implementation of
the AES round operation in SNOW-V is not protected against cache-based attacks, the AES-
round computations in these early initialisation steps could be exploited to recover secret key
information.

Likewise, insecure implementations of finite field multiplication may be exploited to recover
information about an unknown factor. Multiplication over binary finite fields is typically im-
plemented either based on precomputed tables or by having data-dependent branches. Both
methods are vulnerable to timing attacks. In the case of SNOW-V, multiplication over GF(216)
is by the known field elements α, α−1, β, β−1, and this can be implemented efficiently and se-
curely (as discussed in [18]). An insecure implementation of multiplication over the field GF(2128)
however could be potentially exploited to recover secret state information or the authentication
key; see [33].

Thus we suggest that the designers explicitly recommend that implementers of SNOW-V use
constant-time techniques in their implementation; for example [33], or preferably use AES-NI
and PCLMULQDQ instructions10 [22, 23].

9 AEAD mode

The SNOW-V specification also describes how to use the cipher in an Authenticated Encryption
with Associated Data (AEAD) mode of operation. The mode consists of a combination of stream
cipher encryption with the GHASH algorithm as defined in [14]. In more detail, the mode works
in the following way.

• When operating in AEAD mode, SNOW-V takes as input a bit string A, which will be
authenticated but not encrypted (the “Additional Associated Data”), and a plaintext string
P , which will be both encrypted and authenticated. Denote by lenA and lenP the lengths
in bits of A and P , respectively. Note that A may be the empty string, in which case lenA
is set to 0.

10As an example, see the BearSSL implementation of GHASH [4]

19

• SNOW-V is initialised with a 256-bit key K generated uniformly at random and a 128-
bit initialisation vector IV . In the AEAD mode initialisation, the registers (b7, . . . , b0)
in LFSR-B are set to a non-zero string as specified in [18] (instead of all zero, as in
the encryption-only mode); this ensures the separation between the cipher’s AEAD and
encryption-only modes.

• After initialisation, denote by H = z(0) the stream cipher’s first 128-bit output block,
and by R = z(1) the second block. Then let Z = z(2), z(3), z(4), . . . denote the encryption
keystream, where the z(i) are 128-bit blocks.

• Represent the plaintext P as P = P1||P2|| . . . ||P`P , where `P =
⌈
lenP
128

⌉
and the Pi are 128-

bit blocks, with the exception perhaps of the last block P`P which may be shorter than 128
bits. Then let C = P ⊕Z = C1||C2|| . . . ||C`C be the ciphertext defined as Ci = Pi⊕ z(i+1),
where `C = `P , and again the last block C`C may be shorter than 128 bits. If the last block
C`C is shorter than 128 bits, then zero-pad C`C to 128 bits, and denote by C the resulting
ciphertext string with `C full 128-bit blocks Ci.

• Represent the associated data A as A = A1||A2|| . . . ||A`A , where `A =
⌈
lenA
128

⌉
and the Ai

are 128-bit blocks, again with the exception perhaps of the last block A`a which may be
shorter; if this is the case, zero-pad A`A to 128 bits and denote the resulting associated
data string with `A full 128-bit blocks as A.

• Let L be the 128-bit string ([lenA]64 || [lenP]64), where [x]64 is the representation of a
non-negative integer x as a 64-bit string (with bit ordering as defined in [14]). Then define
the string

M = M1||M2|| . . . ||M`M ,

where `M = `A + `C + 1; Mi = Ai, for 1 ≤ i ≤ `A; Mi+`A = Ci, for 1 ≤ i ≤ `C ; and
M`M = L.

• Compute the 128-bit tag T as
GHASHH(M)⊕R.

The output of SNOW-V in AEAD mode is the string (C, T) of (lenP + 128) bits. Decryption
and verification, which take as input (K, IV,A,C, T), are done in the obvious way. See Figure 4
for a diagrammatic representation of the SNOW-V stream cipher in AEAD mode.

Figure 4: Diagram for SNOW-V in AEAD mode (from [18])

20

The authentication procedure in the SNOW-V AEAD mode of operation is a well-known
method for constructing message authentication algorithms based on universal hash functions [35,
44]. GHASH implements a polynomial hash function, with key H, and the tag computed by
pseudo-OTP encrypting the hash output with R. The method is efficient – the polynomial
evaluation is typically implemented using Horner’s method, as illustrated in Figure 4 – and
offers good security guarantees: if H and R are generated truly uniformly at random, then the
construction is an information-theoretic secure MAC scheme11.

The polynomial evaluation hash employed in GHASH is based on an ε–almost XOR universal
hash function family, where ε = `MAX

2128 and `MAX is the maximum permissible length of the input
M to the algorithm, in 128-bit blocks. SNOW-V adopts the same restrictions in the maximum
length for the Additional Associated Data and plaintext as in [14], namely lenP ≤ 239−256 bits
and lenA ≤ 264 − 1 bits. It follows that

`MAX =

⌈
264 − 1

128

⌉
+

(
239 − 256

128

)
+ 1 = 257 + 232 − 1 ≈ 257.

As it is the case with the GCM mode of operation [14], in the SNOW-V AEAD mode the strings
H and R are not truly random, but rather pseudo-randomly generated. One distinctive advan-
tage in the SNOW-V AEAD mode is however that a fresh authentication key H is generated
following each initialisation, while in GCM the string H is fixed for a particular key K (and
equal to EK([0]128)). Indeed, most attacks proposed against polynomial-based MACs and GCM
presuppose the re-use of the authentication key, and thus do not generally apply to SNOW-V
in AEAD mode [36]. Regarding the masking string R, the probability of collisions for GCM was
worked out in detail in [30], fixing an error in the original proof in [37]. On the other hand,
it is easy to show that collisions for the pair (H,R) in SNOW-V in AEAD mode occur with
negligible probability.

Proofs of security for the GCM mode operation were given in the original proposal [37], and
later repaired in [30]. For the SNOW-V AEAD mode, we may instead refer to [41], where a
security analysis of the composition of the ChaCha20 stream cipher and the Poly1305 authenti-
cation algorithm is provided. The proofs in [41] can be adapted to derive the following result for
SNOW-V in AEAD mode.

Let A be a nonce-respecting adversary attempting to defeat the AE security of the
SNOW-V algorithm in AEAD mode, which makes at most q queries to the encryp-
tion/decryption oracles. Then there is an adversary B against the PRG security of
the SNOW-V keystream generator such that

Advsnow-v-aead
ae (A) ≤ Advsnow-v

prg (B) +
q · `MAX

2128
≤ Advsnow-v

prg (B) +
q

270
.

We make two remarks about the result above. First we note that the bounds are valid only
under the reasonable assumption that a key-IV pair (K, IV) for the algorithm is never repeated.
Moreover we also assume that the authentication tag is 128 bits long; if a shorter tag is used, by
truncating the output of the authentication algorithm to t < 128 bits, the bound can be adapted
accordingly, namely the second summand on the right-hand side becomes q·`MAX

2t ≤ q
2t−58 .

11In more detail, let H be an ε–almost XOR universal hash function family, F be a family of truly random
functions, and the MAC algorithm be defined as MAC(M) = (r, h(M) ⊕ f(r)), where h ∈ H, f ∈ F , and r is a
non-repeating counter. If an adversary makes q1 queries to the tagging oracle, and q2 queries to the verification
oracle, then the probability of forging a MAC tag is at most q2ε.

21

10 Conclusions

Following a thorough security evaluation, we have found no issues that impact the security of
the SNOW-V stream cipher. The only cryptanalytic point of note is a form of TMD Trade-off
attack, which had already been discussed by the designers, and which we consider of no practical
relevance. Whilst we have indicated in this report some possible future avenues of analysis, our
assessment is that the SNOW-V stream cipher has a sound design, which is supported by a
detailed analysis [18], and gives us no cause for concern. In our opinion SNOW-V achieves its
design and security goals.

References

[1] Martin R. Albrecht, Carlos Cid, Lorenzo Grassi, Dmitry Khovratovich, Reinhard Lüftenegger,
Christian Rechberger and Markus Schofnegger. Algebraic Cryptanalysis of STARK-Friendly De-
signs: Application to MARVELlous and MiMC. Advances in Cryptology - ASIACRYPT 2019,
volume 11923 of Lecture Notes in Computer Science, Part III, pages 371–397. Springer, 2019.

[2] Steve Babbage. Improved exhaustive search attacks on stream ciphers. European Convention on
Security and Detection, 1995, pp.161–166, Brighton, UK, 16–18 May 1995. IET.

[3] Magali Bardet, Jean-Charles Faugère and Bruno Salvy. Complexity of Gröbner basis computation
for Semi-regular Overdetermined sequences over F2 with solutions in F2. INRIA Technical Report
RR-5049, 2003.

[4] BearSSL. GHASH implementation. https://tinyurl.com/w8wd3mx

[5] D. J. Bernstein. Cache-timing attacks on AES, 2005.
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf

[6] Olivier Billet and Henri Gilbert. Resistance of SNOW 2.0 against algebraic attacks. Topics in
Cryptology – CT-RSA 2005. volume 3376 of Lecture Notes in Computer Science, pages 19–28.
Springer, 2005.

[7] Alex Biryukov and Adi Shamir. Cryptanalytic Time/Memory/Data Tradeoffs for Stream Ciphers.
Advances in Cryptology – ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer Science,
pages 1–13, Springer-Verlag Berlin Heidelberg 2000

[8] Alex Biryukov, Adi Shamir and David Wagner. Real Time Cryptanalysis of A5/1 on a PC. Fast
Software Encryption – FSE 2000. Lecture Notes in Computer Science, volume 1978, pages 1–18.
Springer, Berlin, Heidelberg 2000.

[9] Joseph Bonneau and Ilya Mironov. Cache-Collision Timing Attacks Against AES. CHES 2006:
Cryptographic Hardware and Embedded Systems – CHES 2006, pages 201–215.

[10] Fabian van den Broek and Erik Poll. A Comparison of Time-Memory Trade-Off Attacks on Stream
Ciphers Progress in Cryptology – AFRICACRYPT 2013, Lecture Notes in Computer Science, vol-
ume 7918, pages 406–423. Springer, Berlin, Heidelberg 2013.

[11] Carlos Cid, Sean Murphy and Matthew Robshaw. Algebraic Aspects of the Advanced Encryption
Standard, Springer 2006.

[12] Nicolas Courtois, Alexander Klimov, Jacques Patarin and Adi Shamir. Efficient algorithms for
solving overdefined systems of multivariate polynomial equations, International Conference on the
Theory and Applications of Cryptographic Techniques, pages 392–407. Springer, 2000.

22

https://tinyurl.com/w8wd3mx
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf

[13] Orr Dunkelman and Nathan Keller. Treatment of the initial value in time-memory-data tradeoff
attacks on stream ciphers. Information Processing Letters, 107(5):133–137, 2008.

[14] Morris Dworkin. Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode
(GCM) and GMAC. NIST Special Publication 800-38D, Nov 2007. http://csrc.nist.gov/

publications/nistpubs/800-38D/SP-800-38D.pdf

[15] Patrik Ekdahl and Thomas Johansson. SNOW – a new stream cipher. In Proceedings of First Open
NESSIE Workshop, KU-Leuven, 2001.

[16] Patrik Ekdahl and Thomas Johansson. A New Version of the Stream Cipher SNOW. In Proceedings
of Selected Areas in Cryptography (SAC 2002), volume 2595 of Lecture Notes in Computer Science,
pages 47–61. Springer, 2002.

[17] Patrik Ekdahl, Thomas Johansson, Alexander Maximov and Jing Yang. A new SNOW stream
cipher called SNOW-V. Cryptology ePrint Archive, Report 2018/1143. (revision of 27 Aug 2019)
https://eprint.iacr.org/2018/1143

[18] Patrik Ekdahl, Thomas Johansson, Alexander Maximov and Jing Yang. A new SNOW stream
cipher called SNOW-V. IACR Transactions on Symmetric Cryptology, 2019(3), 1–42.
https://doi.org/10.13154/tosc.v2019.i3.1-42

[19] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases (F4). Journal of pure
and applied algebra, Volume 139, number 1–3, pages 61–88. Elsevier, 1999.

[20] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases without reduction
to zero (F5). Proceedings of the 2002 International Symposium on Symbolic and Algebraic Compu-
tation. pages 75–83. ACM 2002.

[21] J. Golic Cryptanalysis of Alleged A5 Stream Cipher Advances in Cryptology - EUROCRYPT’97,
volume 1233 of Lecture Notes in Computer Science, pages 239–255. Springer-Verlag 1997.

[22] Shay Gueron. Intel Advanced Encryption Standard (AES) New Instructions Set
Revision 3.0, May 2010. https://www.intel.com/content/dam/doc/white-paper/

advanced-encryption-standard-new-instructions-set-paper.pdf

[23] Shay Gueron and Michael E. Kounavis. Intel Carry-Less Multiplication Instruction and its Usage
for Computing the GCM Mode. Revision 2.02, April 2014. https://software.intel.com/sites/
default/files/managed/72/cc/clmul-wp-rev-2.02-2014-04-20.pdf

[24] Yonglin Hao, Takanori Isobe, Lin Jiao, Chaoyun Li, Willi Meier, Yosuke Todo, and Qingju Wang.
Improved Division Property Based Cube Attacks Exploiting Algebraic Properties of Superpoly.
Advances in Cryptology CRYPTO 2018, volume 10991 of Lecture Notes in Computer Science, pages
275–305 Springer, 2018.

[25] P. Hawkes and G.G. Rose. Guess-and-determine attacks on SNOW. Selected Areas in Cryptography
– SAC 2002, volume 2595, pages 37–46, 2002.

[26] Martin E. Hellman. A cryptanalytic time-memory trade-off. IEEE Transactions on Information
Theory, vol. 26, issue 4, pp. 401– 406, July 1980.

[27] Yonglin Hao, Willi Meier, Yosuke Todo, Takanori Isobe. Cube Attacks on Non-Blackbox Poly-
nomials Based on Division Property (Full Version). Cryptology ePrint Archive, Report 2017/306.
https://eprint.iacr.org/2017/306

[28] Jin Hong and Palash Sarkar. New applications of time memory data tradeoffs. International Con-
ference on the Theory and Application of Cryptology and Information Security, pages 353– 372.
Springer, 2005.

23

http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
https://eprint.iacr.org/2018/1143
https://doi.org/10.13154/tosc.v2019.i3.1-42
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://software.intel.com/sites/default/files/managed/72/cc/clmul-wp-rev-2.02-2014-04-20.pdf
https://software.intel.com/sites/default/files/managed/72/cc/clmul-wp-rev-2.02-2014-04-20.pdf
https://eprint.iacr.org/2017/306

[29] Gorka Irazoqui and Mehmet Sinan Inci and Thomas Eisenbarth and Berk Sunar. Wait a minute! A
fast, Cross-VM attack on AES. Research in Attacks, Intrusions and Defenses Symposium - RAID
2014. https://eprint.iacr.org/2014/435.pdf

[30] Tetsu Iwata, Keisuke Ohashi, and Kazuhiko Minematsu. Breaking and Repairing GCM Security
Proofs. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology CRYPTO 2012,
volume 7417 of Lecture Notes in Computer Science, pages 31–49. Springer Berlin Heidelberg, 2012.

[31] Lin Jiao, Yongqiang Li and Yonglin Hao. A Guess-And-Determine Attack On SNOW-V Stream
Cipher. The Computer Journal, Mar 2020. https://doi.org/10.1093/comjnl/bxaa003

[32] Antoine Joux and Vanessa Vitse. A crossbred algorithm for solving Boolean polynomial systems.
International Conference on Number-Theoretic Methods in Cryptology, pages 3–21. Springer, 2017.

[33] Emilia Käsper and Peter Schwabe. Faster and Timing-Attack Resistant AES-GCM. CHES 2009:
Cryptographic Hardware and Embedded Systems – CHES 2009 pages 1–17. Springer 2009. https:
//www.esat.kuleuven.be/cosic/publications/article-1261.pdf

[34] Aleksandar Kircanski and Amr M. Youssef. On the Sliding Property of SNOW 3G and SNOW 2.0.
IET Information Security, 5(4):199–206, 2011.

[35] Hugo Krawczyk. LFSR-based Hashing and Authentication. In Yvo G. Desmedt, editor, Advances
in Cryptology CRYPTO 94, volume 839 of Lecture Notes in Computer Science, pages 129–139.
Springer Berlin Heidelberg, 1994.

[36] Atul Luykx and Bart Preneel. Optimal Forgeries Against Polynomial-Based MACs and GCM.
Advances in Cryptology - EUROCRYPT 2018, Part I, volume 10820 of Lecture Notes in Computer
Science, pages 445–467. Springer Berlin Heidelberg, 2018.

[37] David A. McGrew and John Viega. The Security and Performance of the Galois/Counter Mode
(GCM) of Operation. In Anne Canteaut and Kapaleeswaran Viswanathan, editors, Progress in
Cryptology - INDOCRYPT 2004, volume 3348 of Lecture Notes in Computer Science, pages 343–
355. Springer Berlin Heidelberg, 2005.

[38] Sean Murphy and Matthew Robshaw, Essential Algebraic Structure within the AES, Crypto 2002,
volume 2442 of Lecture Notes in Computer Science, pages 1–16, Springer, 2002.

[39] Michael Neve, Jean-Pierre Seifert. Advances on access-driven cache attacks on AES. In Proceedings
of Selected Areas in Cryptography (SAC–06), Lecture Notes in Computer Science 4356, pp. 147–
162, Springer-Verlag, 2006.

[40] D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks and counter-measures: The case of AES.
CT-RSA, 2006

[41] Gordon Procter. A Security Analysis of the Composition of ChaCha20 and Poly1305. Cryptology
ePrint Archive, Report 2014/613. https://eprint.iacr.org/2014/613

[42] SAGE. Specification of the 3GPP Confidentiality and Integrity Algorithms UEA2 & UIA2.
Version 1.1, ETSI/SAGE, 2006. https://www.gsma.com/aboutus/wp-content/uploads/2014/12/
snow3gspec.pdf.

[43] SageMath, the Sage Mathematics Software System (Version 8.9), The Sage Developers, 2019,
https://www.sagemath.org.

[44] Victor Shoup. On Fast and Provably Secure Message Authentication Based on Universal Hashing.
In Neal Koblitz, editor, Advances in Cryptology CRYPTO 96, volume 1109 of Lecture Notes in
Computer Science, pages 313–328. Springer Berlin Heidelberg, 1996.

24

https://eprint.iacr.org/2014/435.pdf
https://doi.org/10.1093/comjnl/bxaa003
https://www.esat.kuleuven.be/cosic/publications/article-1261.pdf
https://www.esat.kuleuven.be/cosic/publications/article-1261.pdf
https://eprint.iacr.org/2014/613
https://www.gsma.com/ aboutus/wp-content/uploads/2014/12/snow3gspec.pdf
https://www.gsma.com/ aboutus/wp-content/uploads/2014/12/snow3gspec.pdf

[45] Paul Stankovski. Greedy Distinguishers and Nonrandomness Detectors. In Guang Gong and Kis-
han Chand Gupta, editors, Progress in Cryptology - INDOCRYPT 2010, Lecture Notes in Computer
Science, pages 210–226. Springer Berlin Heidelberg.

[46] Ling Sun, Wei Wang, and Meiqin Wang. Automatic search of bit-based division property for ARX
ciphers and word-based division property. Advances in Cryptology – ASIACRYPT 2017, volume
10624 of Lecture Notes in Computer Science, pages 128–157. Springer. 2017.

[47] Ling Sun, Wei Wang, and Meiqin Wang. MILP-Aided Bit-Based Division Property for Primitives
with Non-Bit-Permutation Linear Layers. IET Information Security, volume 14, number 1, pages
12–20. 2020

[48] E. Tromer, D. A. Osvik, and A. Shamir. Efficient cache attacks on AES, and countermeasures.
Journal of Cryptology, Volume 23, Issue 1, pages 37–71. January 2010.

[49] Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying MILP method to searching
integral distinguishers based on division property for 6 lightweight block ciphers. Advances in
Cryptology – ASIACRYPT 2016, volume 10031 of Lecture Notes in Computer Science, pages 648–
678. Springer, 2016.

[50] Wenying Zhang and Vincent Rijmen. Division Cryptanalysis of Block Ciphers with a Binary Dif-
fusion Layer. IET Information Security, volume 13, pages 87–95. 2019

25

	The SNOW-V Stream Cipher
	SNOW-V Initialisation
	Transfer of Key Entropy
	MDM test
	Division Trails
	The Injectiveness of the SNOW-V Initialisation
	SNOW-V Initialisation with Random IV
	SNOW-V Initialisation with Fixed IV

	Linearity Properties of SNOW-V
	Primitivity of the LFSR arrangement
	Correlation Attacks

	Algebraic Attacks
	A Quadratic Equation System over GF(2) for SNOW-V
	A Cubic Equation System for SNOW-V
	Further Equation Systems for SNOW-V

	Guess-and-Determine Attacks
	Time-Memory-Data Trade-Off (TMD-TO) Attacks
	Related Key-IV Attacks
	Side-Channel Attacks
	AEAD mode
	Conclusions

